1) Let ia_left = k-n-1, ib_left = k-m-1, // other is same as 1 Kth Smallest Element in an Array - EnjoyAlgorithms You should be removing the left half of A and the right half of B, rather than the other way around. Unfortunately approach I is incorrect starting from step 2. use routine of finding the median of two sorted arrays. I have 2 sorted arrays of integers, how do I find the kth biggest item in O(logn) time? If k is larger than sum of half-lengths, we know that first half of one of the arrays can be eliminated. So the median is the kth element of original two arrays. 1 Given two sorted array of size M and N. I was trying to implement an algorithm with time complexity O (logM+logN). If we add up the position of the elements in A and B, we have the total number of elements in the two arrays smaller than the current element. Intuitively, if we find x, we could find the kth element. First, let's approach this question with a slow O(k) algorithm. Dumping smaller parts of A and B and cut both sizes to m+n-k+1. Ukkonen's suffix tree algorithm in plain English. Implement an algorithm using divide and conquer technique: Given two sorted arrays of size m and n respectively, find the element that would be at the kth position in combined sorted array. The second one is how to define the size of left part. sizeB is the same definition except we calculate the value such a way that sizeA+sizeB=k. Solved Q1) (12 points) Using Divide and conquer approach, - Chegg Of course not, but to select the nth element from a list of any size, you have to read at least n elements. What is a time efficient algorithm to find the k th smallest element in the union of both arrays? Obviously we can ignore all a [i] and b [i] where i > k. First let's compare a [k/2] and b [k/2]. int[] a = { 1, 5, 6, 8, 9, 11, 15, 17, 19 }; Let us see different methods to get the median of two sorted arrays of size n each. Am I in trouble? K-th smallest element of two sorted arrays - OpenGenus IQ 1. two the of merge in the element th the find to algorithm conquer-and-divide efficient an analyze and design ly, respective elements,, with sequences sorted Given two 10. m,n O k n m 5 4 3 2 1 7 6 5 4 3 2 1 b b b b b a a a a a a a . 3. Now how to decide startIndex and endIndex at beginning of binary search over arr1 The strategy is basically comparing the middle index elements from two subarray based on their length condition. We can NOT include or exclude A2[0]!!! This is a question one of my friends told me he was asked while interviewing, I've been thinking about a solution. there is no bug, i have tested my code before i posted to SO, Thanks sammy333, I have updated the code. I have 2 sorted arrays of integers, how do I find the kth biggest item in O(logn) time? .. then we cannot find kth smallest element in union of both sorted arrays ryt So return Invalid data. I. K-th element of two sorted Arrays | Practice | GeeksforGeeks I have another solution. Here's my code based on Jules Olleon's solution: Here is my implementation in C, you can refer to @Jules Ollon 's explains for the algorithm: the idea behind the algorithm is that we maintain i + j = k, and find such i and j so that a[i-1] < b[j-1] < a[i] (or the other way round). They say it takes O (logN + logM) where N and M are the arrays lengths. To sort the array, we take an element that is lesser from two arrays each time. The time to do this in array B is the same, so the net runtime for the algorithm is O(lg k lg n) = O(lg2 n) = o(n), which is sublinear. The time complexity is O(log(m+n-k+1)) < O(log(2k-k)) = O(log k). Each iteration costs O(lg n), since we have to do a binary search in B. Write an algorithm to find the median. or slowly? In the reduction steps, it is important to get rid of a number of elements in one of the arrays proportional to its length in order to make the run-time logarithmic. Note that we can't eliminate one half from each array at once. Finding the Kth Smallest Element in the Union of Two Sorted Arrays [100% Working Code] - Median of two sorted arrays - Divide and Conquer I was asked this question in an interview. [duplicate]. Kth Largest Element in an Array - LeetCode Expert Answer. This doesn't work if all of the values in array 1 come before the values in array 2. The median is also the m+n-k+1 th element in A+B if counting from the end toward the front. Write a pseudocode/describe your strategy for a function kthelement (Arr1, Arr2, k) that uses the concepts mentioned in the divide and . How to find the $k$th smallest item among the union of $C$ disjoint, sorted arrays? Thank you @Fei. Entries (RSS) and Comments (RSS). So let's focus just on the the first k elements of array A. For example, int a2[] = {1,2,3,4, 5}; int a1[] = {5,6,8,10,12}; getNth( a1, a2, 7 ). I. How can I animate a list of vectors, which have entries either 1 or 0? If elements are leftover in either the first or second array, we finally copy those elements in the new merged array. First let's compare a[k/2] and b[k/2]. The median of a finite list of numbers can be found by arranging all the numbers from lowest value to highest value and picking the middle one. Comparing k with the sum of half-lengths of the arrays gives us information about which half of one of the arrays can be eliminated. 2) if a == b, return a. But I'll give you +1 for an interesting question nonetheless. 1. If the elements compared equal, we've found the k'th element; otherwise, let the array with the lower k/2'th element be A and the other be B. It is given below. Perform binary search as follows (pretty rough pseudocode, not taking in account 'one-off' problems): Find the next element is bigger than the next element in the other list, at which point you switch to the other list. PDF Part Four - Stanford University If it is not greater than A[0], it is the result, else dump kth element in B. Median of two sorted arrays of same size - GeeksforGeeks As we know, all elements in the array are distinct. Steps: Firstly we take the given arrays and form a new merged array. I don't think this is possible but I'll be happy to be proved wrong which is why this is a comment rather than an answer :-) The only way way to make the extract itself O(1) is to merge the lists which is O(n). The code however requires k to be smaller than the length of the first array which is a limitation. Second, we'll see two inefficient but straightforward solutions. Obviously we can ignore all a[i] and b[i] where i > k. Let's name the arrays a and b. with startindex = 1 and endIndex = ? You've got it, just keep going! This shouldn't work. Instead of counting from the smallest to largest, we think from larger side. Input: Solved 3. Implement an algorithm using divide and conquer - Chegg The whole process ends when k = k. Consider array. Keep track of count while comparing elements of two, [pastacode lang=c manual=%2F%2F%20A%20Simple%20Merge%20based%20O(n)%20solution%20to%20find%20median%20of%0A%2F%2F%20two%20sorted%20arrays%0A%23include%20%3Cstdio.h%3E%0A%20%0A%2F*%20This%20function%20returns%20median%20of%20ar1%5B%5D%20and%20ar2%5B%5D.%0A%20%20%20Assumptions%20in%20this%20function%3A%0A%20%20%20Both%20ar1%5B%5D%20and%20ar2%5B%5D%20are%20sorted%20arrays%0A%20%20%20Both%20have%20n%20elements%20*%2F%0Aint%20getMedian(int%20ar1%5B%5D%2C%20int%20ar2%5B%5D%2C%20int%20n)%0A%7B%0A%20%20%20%20int%20i%20%3D%200%3B%20%20%2F*%20Current%20index%20of%20i%2Fp%20array%20ar1%5B%5D%20*%2F%0A%20%20%20%20int%20j%20%3D%200%3B%20%2F*%20Current%20index%20of%20i%2Fp%20array%20ar2%5B%5D%20*%2F%0A%20%20%20%20int%20count%3B%0A%20%20%20%20int%20m1%20%3D%20-1%2C%20m2%20%3D%20-1%3B%0A%20%0A%20%20%20%20%2F*%20Since%20there%20are%202n%20elements%2C%20median%20will%20be%20average%0A%20%20%20%20%20of%20elements%20at%20index%20n-1%20and%20n%20in%20the%20array%20obtained%20after%0A%20%20%20%20%20merging%20ar1%20and%20ar2%20*%2F%0A%20%20%20%20for%20(count%20%3D%200%3B%20count%20%3C%3D%20n%3B%20count%2B%2B)%0A%20%20%20%20%7B%0A%20%20%20%20%20%20%20%20%2F*Below%20is%20to%20handle%20case%20where%20all%20elements%20of%20ar1%5B%5D%20are%0A%20%20%20%20%20%20%20%20%20%20smaller%20than%20smallest(or%20first)%20element%20of%20ar2%5B%5D*%2F%0A%20%20%20%20%20%20%20%20if%20(i%20%3D%3D%20n)%0A%20%20%20%20%20%20%20%20%7B%0A%20%20%20%20%20%20%20%20%20%20%20%20m1%20%3D%20m2%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20m2%20%3D%20ar2%5B0%5D%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20break%3B%0A%20%20%20%20%20%20%20%20%7D%0A%20%0A%20%20%20%20%20%20%20%20%2F*Below%20is%20to%20handle%20case%20where%20all%20elements%20of%20ar2%5B%5D%20are%0A%20%20%20%20%20%20%20%20%20%20smaller%20than%20smallest(or%20first)%20element%20of%20ar1%5B%5D*%2F%0A%20%20%20%20%20%20%20%20else%20if%20(j%20%3D%3D%20n)%0A%20%20%20%20%20%20%20%20%7B%0A%20%20%20%20%20%20%20%20%20%20%20%20m1%20%3D%20m2%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20m2%20%3D%20ar1%5B0%5D%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20break%3B%0A%20%20%20%20%20%20%20%20%7D%0A%20%0A%20%20%20%20%20%20%20%20if%20(ar1%5Bi%5D%20%3C%20ar2%5Bj%5D)%0A%20%20%20%20%20%20%20%20%7B%0A%20%20%20%20%20%20%20%20%20%20%20%20m1%20%3D%20m2%3B%20%20%2F*%20Store%20the%20prev%20median%20*%2F%0A%20%20%20%20%20%20%20%20%20%20%20%20m2%20%3D%20ar1%5Bi%5D%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20i%2B%2B%3B%0A%20%20%20%20%20%20%20%20%7D%0A%20%20%20%20%20%20%20%20else%0A%20%20%20%20%20%20%20%20%7B%0A%20%20%20%20%20%20%20%20%20%20%20%20m1%20%3D%20m2%3B%20%20%2F*%20Store%20the%20prev%20median%20*%2F%0A%20%20%20%20%20%20%20%20%20%20%20%20m2%20%3D%20ar2%5Bj%5D%3B%0A%20%20%20%20%20%20%20%20%20%20%20%20j%2B%2B%3B%0A%20%20%20%20%20%20%20%20%7D%0A%20%20%20%20%7D%0A%20%0A%20%20%20%20return%20(m1%20%2B%20m2)%2F2%3B%0A%7D%0A%20%0A%2F*%20Driver%20program%20to%20test%20above%20function%20*%2F%0Aint%20main()%0A%7B%0A%20%20%20%20int%20ar1%5B%5D%20%3D%20%7B1%2C%2012%2C%2015%2C%2026%2C%2038%7D%3B%0A%20%20%20%20int%20ar2%5B%5D%20%3D%20%7B2%2C%2013%2C%2017%2C%2030%2C%2045%7D%3B%0A%20%0A%20%20%20%20int%20n1%20%3D%20sizeof(ar1)%2Fsizeof(ar1%5B0%5D)%3B%0A%20%20%20%20int%20n2%20%3D%20sizeof(ar2)%2Fsizeof(ar2%5B0%5D)%3B%0A%20%20%20%20if%20(n1%20%3D%3D%20n2)%0A%20%20%20%20%20%20%20%20printf(%22Median%20is%20%25d%22%2C%20getMedian(ar1%2C%20ar2%2C%20n1))%3B%0A%20%20%20%20else%0A%20%20%20%20%20%20%20%20printf(%22Doesnt%20work%20for%20arrays%20of%20unequal%20size%22)%3B%0A%20%20%20%20getchar()%3B%0A%20%20%20%20return%200%3B%0A%7D message= highlight= provider=manual/]. Some people may worry what if (index1+index2) jump over k-1? We know for a fact that the kth smallest value can't appear in the array in array A after position k (assuming all the elements are distinct). The search of array A does a binary search over k elements, which takes O(lg k) iterations. Draw the This problem has been solved! Companies. When dumping, we need to check kth element in B if it is the kth element in A+B by comparing it with A[0]. By clicking Accept all cookies, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy. The k/2'th element of what remains is guaranteed to be bigger than the bottom half of A, so it's guaranteed to be the k'th element of the original. Since the dumped elements in B are all larger than the kth element in B, they must be larger than the kth element in A+B and kth element in A+B. Can I spin 3753 Cruithne and keep it spinning? The first pseudo code provided above, does not work for many values. For the purposes of this course, we'll use zero-indexing, so the smallest element would be given by the 0th order statistic.